NarL dimerization? Suggestive evidence from a new crystal form.

نویسندگان

  • I Baikalov
  • I Schröder
  • M Kaczor-Grzeskowiak
  • D Cascio
  • R P Gunsalus
  • R E Dickerson
چکیده

The structure of the Escherichia coli response regulator NarL has been solved in a new, monoclinic space group, and compared with the earlier orthorhombic crystal structure. Because the monoclinic crystal has two independent NarL molecules per asymmetric unit, we now have three completely independent snapshots of the NarL molecule: two from the monoclinic form and one from the orthorhombic. Comparison of these three structures shows the following: (a) The pairing of N and C domains of the NarL molecule proposed from the earlier analysis is in fact correct, although the polypeptide chain connecting domains was, and remains, disordered and not completely visible. The new structure exhibits identical relative orientation of N and C domains, and supplies some of the missing residues, leaving a gap of only seven amino acids. (b) Examination of corresponding features in the three independent NarL molecules shows that deformations in structure produced by crystal packing are negligible. (c) The "telephone receiver" model of NarL activation is confirmed. The N domain of NarL blocks the binding of DNA to the C domain that would be expected from the helix-turn-helix structure of the C domain. Hence, binding can only occur after significant displacement of N and C domains. (d) NarL monomers have a strong tendency toward dimerization involving contacts between helixes alpha 1 in the two monomers, and this may have mechanistic significance in DNA binding. Analogous involvement of helix alpha 1 in intermolecular contacts is also found in UhpA and in the CheY/CheZ complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional roles for the GerE-family carboxyl-terminal domains of nitrate response regulators NarL and NarP of Escherichia coli K-12

NarL and NarP are paralogous response regulators that control anaerobic gene expression in response to the favoured electron acceptors nitrate and nitrite. Their DNA-binding carboxyl termini are in the widespread GerE-LuxR-FixJ subfamily of tetrahelical helix-turn-helix domains. Previous biochemical and crystallographic studies with NarL suggest that dimerization and DNA binding by the carboxyl...

متن کامل

G-protein Coupled Receptor Dimerization

A growing body of evidence suggests that GPCRs exist and function as dimers or higher oligomers. The evidence for GPCR dimerization comes from biochemical, biophysical and functional studies. In addition, researchers have shown the occurrence of heterodimerization between different members of the GPCR family. Two receptors can interact with each other to make a dimer through their extracellular...

متن کامل

Crystal structure of human epidermal growth factor and its dimerization.

Epidermal growth factor (EGF) is a typical growth-stimulating peptide and functions by binding to specific cell-surface receptors and inducing dimerization of the receptors. Little is known about the molecular mechanism of EGF-induced dimerization of EGF receptors. The crystal structure of human EGF has been determined at pH 8.1. There are two human EGF molecules A and B in the asymmetric unit ...

متن کامل

P-13: Male Reproductive Organs Are at Riskfrom Environmental Hazards

Background: Male reproductive disorders that are of interest from an environmental point of view include sexual dysfunction, infertility, cryptorchidism, hypospadias and testicular cancer. Several reports suggest declining sperm counts and increase of these reproductive disorders in some areas during some time periods past 50 years. Materials and Methods: Except for testicular cancer this evide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 37 11  شماره 

صفحات  -

تاریخ انتشار 1998